Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

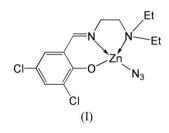
Qing Wang

Office of Organization, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China

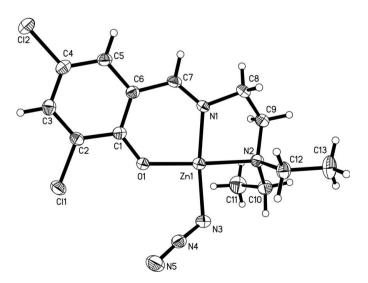
Correspondence e-mail: wangqing_fy@126.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.039 wR factor = 0.105 Data-to-parameter ratio = 15.8


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Azido{2,4-dichloro-6-[2-(diethylamino)ethyliminomethyl]phenolato}zinc(II)


The Zn^{II} atom in the title mononuclear zinc(II) complex, [$Zn(C_{13}H_{17}Cl_2N_2O)(N_3)$], is four-coordinated in a distorted square-planar geometry by one Schiff base ligand and one azide anion. Received 26 July 2006 Accepted 28 July 2006

Comment

As a continuation of our work on the crystal structures of Schiff base complexes (Wang & Fang, 2006a,b), the crystal structure of the title mononuclear zinc(II) complex, (I), is reported in this paper.

The Zn^{II} ion in (I) is four-coordinated by one O atom, one imine N atom and one amine N atom of the Schiff base ligand, and by one N atom of an azide anion, forming a distorted square-planar geometry, as shown in Fig. 1. The geometric parameters around the Zn1 centre (Table 1) are comparable with the values observed in other similar zinc(II) complexes (Yang, 2005; Ju *et al.*, 2005; Odoko *et al.*, 2006; Choi *et al.*, 2005).

© 2006 International Union of Crystallography All rights reserved

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Experimental

3,5-Dichloro-2-hydroxybenzaldehyde (1.0 mmol, 291.0 mg), N,Ndimethylethane-1,2-diamine (1.0 mmol, 88.2 mg), sodium azide (1.0 mmol, 65.0 mg) and Zn(NO₃)₂·6H₂O (1.0 mmol, 297.5 mg) were dissolved in an EtOH/H₂O (100 ml, 5:1 ν/ν) solution. The mixture was stirred for 30 min at room temperature to give a colourless solution. X-ray diffraction quality crystals were formed by evaporation of the solvents in an open atmosphere over a period of several days.

Crystal data

$[Zn(C_{13}H_{17}Cl_2N_2O)(N_3)]$	Z = 4	
$M_r = 395.59$	$D_x = 1.621 \text{ Mg m}^{-3}$	
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation	
a = 10.755 (1) Å	$\mu = 1.85 \text{ mm}^{-1}$	
b = 11.544 (1) Å	T = 293 (2) K	
c = 13.229 (1) Å	Block, colourless	
$\beta = 99.31 \ (2)^{\circ}$	$0.45 \times 0.41 \times 0.37 \text{ mm}$	
V = 1620.8 (3) Å ³		

Data collection

Bruker SMART CCD area-detector diffractometer φ scans, and ω scans with κ offsets

Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{min} = 0.489, T_{max} = 0.547$ (expected range = 0.450–0.504)

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.106$ S = 1.053180 reflections 201 parameters H-atom parameters constrained 12003 measured reflections 3180 independent reflections 2727 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$ $\theta_{\text{max}} = 26.0^{\circ}$

$w = 1/[\sigma^2(F_o^2) + (0.0617P)^2]$
+ 0.7826P]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.76 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Zn1-O1	1.898 (2)	Zn1-N3	1.953 (2)
Zn1-N1	1.941 (2)	Zn1-N2	2.074 (2)
O1-Zn1-N1	93.60 (9)	O1-Zn1-N2	171.21 (9)
O1-Zn1-N3	92.68 (10)	N1-Zn1-N2	84.41 (10)
N1-Zn1-N3	164.36 (11)	N3-Zn1-N2	91.43 (10)

H atoms attached to the C atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with $U_{\rm iso}(\rm H) = 1.2$ or 1.5 times $U_{\rm eq}(\rm C)$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank Fuyang Normal College for research funding.

References

Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01). SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, K.-Y., Ryu, H., Ko, J., Kang, S. O., Han, W.-S. & Suh, I.-H. (2005). Acta Cryst. E61, m2474–m2476.

- Ju, W.-Z., Shi, L., Chen, K. & Xue, J.-Y. (2005). Acta Cryst. E61, m1427m1428.
- Odoko, M., Tsuchida, N. & Okabe, N. (2006). Acta Cryst. E62, m710-m711.
- Wang, Q. & Fang, X.-N. (2006a). Acta Cryst. E62, m1492-m1493.
- Wang, Q. & Fang, X.-N. (2006b). Acta Cryst. E62, m1558-m1559.
- Yang, D.-S. (2005). Acta Cryst. E61, m247-m248.